上業技術研究院 Industrial Technology Research Institute

> An Automated Open Resonator System for Precision Dielectric Measurement in mmWave

Abstract

A automated open-resonator technique is described for the determination of dielectric permittivity and loss tangent in low-loss dielectric materials at millimeter wave frequency. The resonator is kind of the semiSpherical type and consists of a concave and a plane mirror, and the frequency variation method is used. For precisely specimen position at center of standing wave, system developed an automated high resolution motion to move up specimens in the electric field intensity is the strongest, especially for thin specimen. System measurement accuracy and responsibility have been building by quality evaluation execution. The Gauge Repeatability and Reproducibility (GR&R) evaluated automation measurement system of open resonator demonstrated the high resolution of loss tangent. The evaluation of GR&R measurements was defined system deviation about 5% in permittivity and 10% in loss tangent. The perturbation method made it possible to obtain values of complex permittivity of thin sheet specimens of materials such as polyimide (PI), polytetrafluoroethylene (PTFE) and printed circuit boards (PCB) substrate.

The limitation of Open resonator

Results

New Design for wide thickness range of dielectric sample in

mmWave

Motion Resolution : 6 nm

Unidirectional repeatability : 0.018 µm

Progress of measurement

The automated system accurately moves the sample to the maximum electric field position

Easy Operation Program For Operator

Thickness of Sample is Problem

SAMPLE PLANE MIRROR

 $D < R_0$

 $\label{eq:General mode} \begin{aligned} &\frac{1}{n} \tan(nkt - \emptyset_t) = -\tan(kd - \emptyset_d) \ ; \ \varepsilon_r = n^2 \\ & \textbf{thickness} \sim \lambda/2 \end{aligned}$

- Sample thickness about 2mm ~5mm (sheet sample)
- One thickness get the one measurement point

Perturbation mode

thickness < D/1000

- Sample thickness small than 100 um (film sample)
- One thickness get muilti-point measurement in different frequency.

New Design for HemiSpherical Structure

Uncertainty of System

teflon t = 250um		Uc	K	Expanded uncertainty U	Average	Extended relative uncertainty (%)
28GHz	Dk	0.00519	2	0.01037	2.077	0.499
	Df	0.02024	2	4.047E-05	6.183E-04	6.546
38GHz	Dk	0.00519	2	0.01037	2.070	0.501
	Df	0.01554	2	3.109E-05	5.009E-04	6.206
60GHz	Dk	0.00519	2	0.01038	2.053	0.505
	Df	0.01998	2	3.995E-05	5.500E-04	7.264
77GHz	Dk	0.00519	2	0.01039	2.033	0.511
	Df	0.01753	2	3.506E-05	5.340E-04	6.565
Quartz t = 200um		Uc	K	Expanded uncertainty U	Average	Extended relative uncertainty (%)
Quartz t = 200um 28GHz	Dk	Uc 0.00519	К 2	Expanded uncertainty U 0.01038	Average	Extended relative uncertainty (%) 0.235
Quartz t = 200um 28GHz	Dk Df	Uc 0.00519 0.01228	К 2 2	Expanded uncertainty U 0.01038 2.456E-05	Average 4.418 9.976E-05	Extended relative uncertainty (%) 0.235 24.621
Quartz t = 200um 28GHz 38GHz	Dk Df Dk	Uc 0.00519 0.01228 0.00519	K 2 2 2	Expanded uncertainty U 0.01038 2.456E-05 0.01037	Average 4.418 9.976E-05 4.415	Extended relative uncertainty (%) 0.235 24.621 0.235
Quartz t = 200um 28GHz 38GHz	Dk Df Dk Df	Uc 0.00519 0.01228 0.00519 0.01256	K 2 2 2 2 2	Expanded uncertainty U 0.01038 2.456E-05 0.01037 2.512E-05	Average 4.418 9.976E-05 4.415 1.131E-04	Extended relative uncertainty (%) 0.235 24.621 0.235 22.202
Quartz t = 200um 28GHz 38GHz 60GHz	Dk Df Dk Df Df Dk	Uc 0.00519 0.01228 0.00519 0.01256 0.00520	K 2 2 2 2 2 2 2	Expanded uncertainty U 0.01038 2.456E-05 0.01037 2.512E-05 0.01040	Average 4.418 9.976E-05 4.415 1.131E-04 4.415	Extended relative uncertainty (%) 0.235 24.621 0.235 22.202 0.235
Quartz t = 200um 28GHz 38GHz 60GHz	Dk Df Dk Df Dk Dk Df	Uc 0.00519 0.01228 0.00519 0.01256 0.00520 0.01295	K 2 2 2 2 2 2 2 2	Expanded uncertainty U 0.01038 2.456E-05 0.01037 2.512E-05 0.01040 2.590E-05	Average 4.418 9.976E-05 4.415 1.131E-04 4.415 1.539E-04	Extended relative uncertainty (%) 0.235 24.621 0.235 22.202 0.235 16.833
Quartz t = 200um 28GHz 38GHz 60GHz 77GHz	Dk Df Dk Df Dk Df Dk Df	Uc 0.00519 0.01228 0.00519 0.01256 0.00520 0.01295 0.00521	K 2 2 2 2 2 2 2 2 2 2	Expanded uncertainty U 0.01038 2.456E-05 0.01037 2.512E-05 0.01040 2.590E-05 0.01043	Average 4.418 9.976E-05 4.415 1.131E-04 4.415 1.539E-04 4.432	Extended relative uncertainty (%) 0.235 24.621 0.235 22.202 0.235 16.833 0.235

GR&R	Result
UNXIN	NCSUIL

Permittivity	EV	AV	R&R
28G	0.0105	0.0005	0.0105
38G	0.0333	0.0003	0.0333
60G	0.0578	0.0308	0.0655
77G	0.0618	0.0354	0.0712
94G	0.1290	0.0065	0.1292
Loss tangent	EV	AV	R&R
28G	8.415E-05	2.646E-05	8.822E-05
38G	5.469E-05	2.961E-06	5.477E-05
60G	7.029E-05	6.766E-06	7.062E-05
77G	1.099E-04	1.200E-05	1.106E-04
94G	3.081E-04	1.107E-04	3.274E-04

Measurement Value ± R&R
 For Standard sample (Quartz) :
 Permittivity = 4.42 ± 0.065@60GHz
 Loss tangent = 2.1e-4 ± 7.06e-5 @60GHz

- We achieved new testing method of open resonator for wide thickness range of dielectric Sheet in millimeter-wave band. 50um LCP and 250um Teflon sheet dielectric properties testing in 20 GHz to 100 GHz.
- High resolution auto motion integrated in the dielectrics properties testing system in millimeter-wave, Teflon and Quartz repeatability test with our open resonator system. Loss tangent 0.0001 repeatability at 28 GHz to 94GHz.
- Low loss material is important in millimeter-wave application. Molding compound
 PI substrate
 CCL substrate
 Ltcc
 ceramic etc. will development new material for millimeter-wave application.
- Demonstrates millimeter-wave dielectric properties of package materials at different process temperatures.

Acknowledge

The authors would like to thank MOEA Projects support in ITRI.

Acknowledge

[1]. P. K. Yu and A. L. Cullen, "Measurement of permittivity by means of an open resonator: I. Theoretical," Proc. R. Soc. Lond. A, vol. 380, pp. 49–71, 1982.

[2]. A. L. Cullen and P. K. Yu, "The accurate measurement of permittivity by means of an open resonator," Proc. R. Soc. Lond. A, vol. 325, pp. 493–509, 1971.

[3]. S. Wang, L. Hu and D. Xu, Open resonator technique for measuring multilayer dielectrics, Microwave and Optical Technology Letters, vol. 16, no. 6, pp. 368-371, 1997.

[4]. Measurement Method for Dielectric Properties of Fine Ceramics in Millimeter Wave Frequency Range—Part 2: Open Resonator Method, 2004. Japanese Industrial std. JIS, R 1660-2.

[5].T.M.Hirvonenetal., "Measurementofdielectricsat100GHzwithanopen resonator connected to a network analyzer," IEEE Trans. Instrum. Meas., vol. 45, no. 4, pp. 780–786, Aug. 1996.

Industrial Technology Research Institute (ITRI) Chiung Hsiung Chen; Chun An Lu; Yi Chen Wu