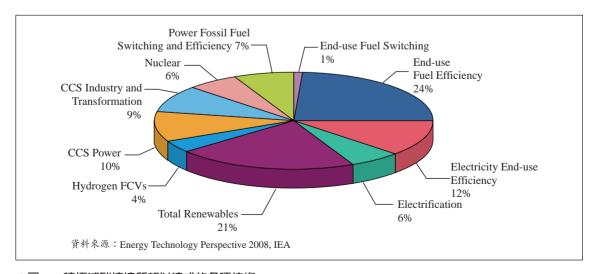


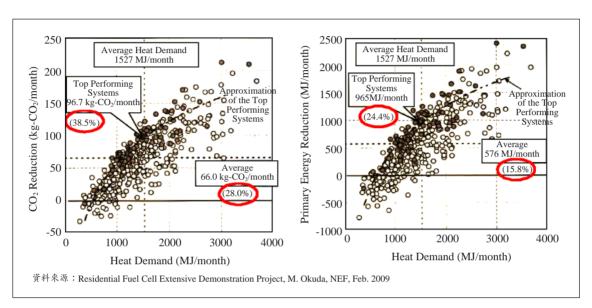
燃料電池產業蓄勢待發

技術主編:曹芳海


現職:工研院能環所(EEL/ITRI)新能源技術組正研究員/組長

專長:質子交換膜燃料電池、氫能源開發、無塵室氣流與潔淨度控制、噪音控制、隧道及大空間通風設計、 低壓與耐溫送風機設計與測試、微重力流體力學、燃燒紊流

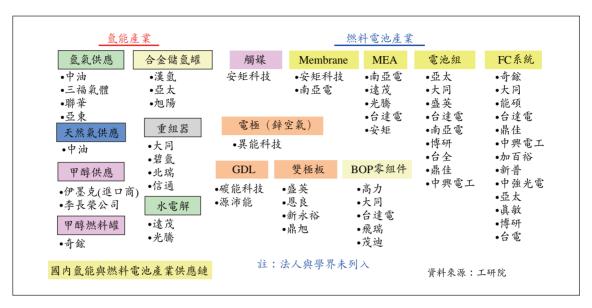
學歷:美國喬治亞理工學院(Georgia Institute of Technology) 航太博士


首先,感謝工業材料雜誌在全球燃料電池早期應用市場蓄勢待發之際,給予國内業界一個機會,簡要介紹目前燃料電池應用技術的趨勢,同時,介紹一部份國内應用技術的發展現狀,期望拋磚引玉,引發更多的分享。本專題的每位作者皆已盡力,但讀者若發現文章內容仍有錯誤或所述已非現狀之情況,歡迎投稿指正,不勝感激。順便藉此機會感謝百忙中仍配合出刊的獻稿業者,對您們的付出深感敬佩。

氫能與燃料電池是國際能源總署(IEA)積極減碳方案(Blue Map Scenario)的重要能源技術選項(見圖一),在終端燃料使用效率(End-use Fuel Efficiency)提升與氫燃料電池車(Hydrogen FCVs)二個項目,都將有重要的貢獻。事實上,日本自 2003~2008 年所進行的家用燃料電池熱電共生系統(Combined Heat & Power System)示範驗證,經過實際運轉使用確認,在日本的氣候與能源結構雙重條件下,使用燃料電池熱電共生系統可達到節能 16%、減碳 28%(見圖二)以上的效果,從『節能即發現新能源(Energy Saved is Energy Found)』及人類需要更多時間以解決二氧化碳排放問題的角度而論,其效益著實顯著,但目前價格仍然太昂貴,須仰賴日本政府補助始得逐漸進入市場,太陽光電市場模式或許值得大家參考。

▲圖一 積極減碳情境所賴以達成的各項技術

氫能與燃料電池在車輛動力系統上的發展,由於車載氫能儲存技術尚未完全解決,導 致燃料電池汽車使用上還不具競爭力,價格仍數倍於目前的汽車價格,且燃料電池在高動 態變化條件下耐久性不足,因此國際大車廠無不傾全力於儲氫、耐久性及新材料的開發,



▲圖二 日本家用熱電共生系統實際應用效果

	3-Year Battery Replacement			5-Year Battery Replacement								
	Battery- Gen.*	PEMFC without Tax Incentive	PEMFC with Incentive	Battery- Gen.	PEMI without Tax Incent	out	PEMFC with Tax Incentive	Gen. New Installation		Battery- Only	PEMFC without Tax Incentive	PEMFO with Ta Incentiv
8-hour Runtime						_				19,037	14,023	12,136
52-hour Runtime	69,860	63,521	58,804	61,082	61,32	26	56,609					
72-hour Runtime				47,318	33,90	01	32,014	28,283	24,886			
176-hour Runtime	93,129	102,403	97,686	75,575	100,2	209	95,491					
			P	Battery-Powered Pallet Truck (3 Batteries Per Truck)		Battery-Powe Pallet Truc (2 Batteries Per		ck	PEM Fuel Cell- Powered Pallet Truck without Incentive		PEM Fuel Cell- Powered Pallet Truck with Incentive	
NPV of Capital Costs (\$)				21,572		17,654			23,835		21,004	
NPV of O&M Costs (Including the Cost of Fuel (\$)				127,539		127,539			52,241		52,241	
NPV of	Total Costs of)	149,111		145,193			76,075		73,245		

▲圖三 燃料電池備用電力與堆高機競爭力分析

J. Zewatsky, A. Thomas, H. Mahy and D. Paul, Battelle Memorial Institute, April 2007

▲圖四 國内氫能與燃料電池產業概略分佈現況

以便能實現未來氫能經濟的願景。在石油終將無法滿足交通使用需求的前提下,油電混合動力車、酒精汽油與生質柴油車應運而起,近來電動車又引起各國政府與業界的高度興趣,預期未來幾年電動車將有另一番景象,而今年美國新政府對氫燃料電池車技術,表現有別於前政府的思維,因此氫燃料電池車技術未來的發展仍待觀察。

燃料電池除了熱電共生系統、氫燃料電池車的應用外,利基(Niche)應用產品市場導入正悄悄的展開中,比較引人注意的是燃料電池備用電力與電動堆高機。根據美國能源部委託的市場研究指出(圖三),要求燃料電池備用電力連續使用在七天以內,在北美地區即使沒有補助,其淨現值成本(Net Present Value Cost)已較電池為低,燃料電池電動堆高機與電池堆高機相比,也有類似的情形,而且堆高機使用越頻繁,燃料電池堆高機便越具優勢。一般認為即使在經濟發展較不富裕的地區,因為電網基礎設施不健全,現代的資通訊服務如果要進入這樣的市場,燃料電池備用電力將是為業者帶來新市場、為社區帶來進步動力的好幫手。國內燃料電池產業逐漸完整(圖四),政府企望能以『綠色能源產業旭升方案』及燃料電池示範驗證補助帶動我國新能源產業起飛,讓我們大家一起努力,並祝大家順利成功。