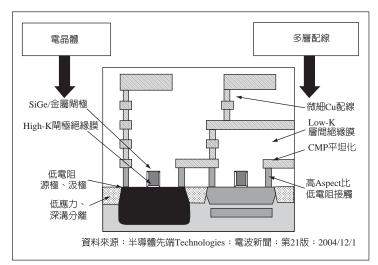


半導體 IC 絕緣膜面臨技術革新

編輯室

半導體 IC 在邁入 65nm 電路線寬時,由於絕緣膜厚度在 4nm 以下時會產生「漏電流」現 象;而埋在配線間隙具防止漏電流功能的層間絕緣膜,也逐漸接近溦細化極限,線路愈來 愈細導致電訊號不容易通過,已經到了無法忽視的地步,因此各半導體公司紛紛研發新的 絕緣膜材料,設法跨越IC線路溦細化的極限。本文彙整高介電係數(High-K)材料絕緣膜及 低介電係數(Low-K)材料絕緣膜的研發現況與廠商動態,供業界參考。

關鍵詞/Key Words


高介電係數(High-K)、低介電係數(Low-K)、半導體 IC (Semiconductor, IC)、絕緣膜 (Insulator)

前言

現在量產線寬 90nm IC 半導體係利 用氧化矽(SiO2)的閘極絕緣膜。隨著半 導體 IC 微細化的發展,絕緣膜即將面 臨材料的技術革新,尤其是當電路線寬 邁入 65nm 的下一代 IC 半導體,絕緣膜 厚度在4nm以下時,會產生量子力學中 所謂的「穿隧效應」,使絕緣膜的功能 無法發揮。換言之,閘極只有在施加電 壓時,電流才會通過絕緣膜流到下方的 電晶體,事實上,當絕緣膜厚度薄至約 2nm 以下時,膜中不純物會造成在未施 加電壓的情況下,絕緣膜上的電流仍在 流動的「漏電流」現象。另一種狀況是 受配線周圍絕緣膜(層間絕緣膜)電阻 的影響(如圖一),已經到了無法忽視 的地步,因此各半導體公司紛紛研發新 的絕緣膜材料,設法跨越 IC 半導體線 路微細化的極限。

閘極絕緣膜與漏電流現象

2005年起半導體業開始量產電路線 寬 90nm IC 半導體,一般預料 2007 年左 右,將開始量產線寬65nm的IC半導體。 2004年12月,在美國舉辦的半導體技

▲圖一 65nm 線寬之半導體製造必要的技術

術「國際電子元件會議」上,陸續發表 以量產化為目的之新材料,例如:

- 1.日本半導體先端技術 Selete,採用 「Hafnium Silicate」的高介電係數(High-K)材料,成功地試作出可以左右電晶 體性能的閘極絕緣膜。
- 2. 美國 IBM 也發表高介電係數絕緣膜與 金屬閘極組合而成的元件,成功地將 漏電流減低至過去的百萬分之一以下。
- 3.美國英代爾已確定將在電路線寬 45nm 以下的半導體元件導入高介電係數絕 緣膜。

左右半導體的最小單位-電晶體性 能的閘極絕緣膜材料正面臨轉換期,現 有的閘極絕緣膜使用的是二氧化矽,已 達材料極限,而半導體公司研發的對象 材料一開始為 HFSiO₂,如今則有介電 係數更高的 Hafnium 與鋁的化合物 「HFAIO」,後者已成為下一代半導體 絕緣膜的候補材料。 High-K 材料的絕 緣膜係以原子層成長為1個分子大小的

厚度,相關的成膜設備需 求殷切。

廠商動態

1.日本半導體先端技術 Selete

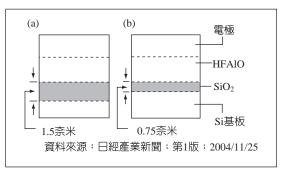
由日本10家半導體大 廠共同出資成立,與東京 Electron 公司共同確立下一 代紹小型電晶體製造用的 絶緣膜技術,在矽晶圓上 形成 High-K 絕緣膜的技

術,也就是在金屬氧化物電場效應 (MOSFET)上製作閘極時使用。

Selete 採用「Hafnium Silicate」的 High-K 材料成功地試作出左右電晶體性 能的閘極絶緣膜,即使只有 2~3nm 的薄 膜仍能維持其低漏電流的特性,結果雖 然實現了高集積度與節省電力,但卻造 成電晶體内部電子移動的速度下降,也 就是積體電路最重要的演算速度變慢。

Selete 尋求東京 Electron 公司的協 助,首先確認 High-K内的二氧化碳等 不純物成為汲極電流速度下降的原因, 由東京 Electron 公司開發「Teruformura」 熱處理設備,可以一面避免不純物的混 入,一面在晶圓上形成 High-K 膜。 Teruformura 可將 25 片晶圓固定在設備 内部的爐,連續進行下列工程:

- a.在晶圓表面形成二氧化矽的氧化膜; b.使用化學氣相沉積法在氧化膜上形成 High-K 膜;
- c.對膜加熱處理是讓材質安定,熱處理

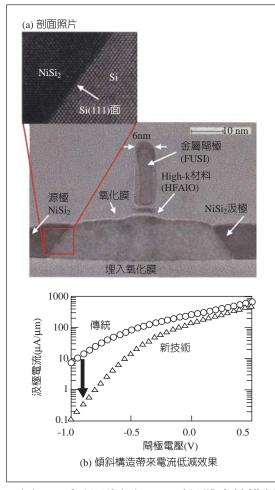

時間為2小時,縮短為過去的六分之

2.日本半導體 MIRAI 計劃

係由日本民間 25 家公司與產業技術總合研究所共同接受 NEDO 的委託,所執行的計劃叫做半導體 MIRAI 計劃,目的在開發電路線寬 45nm IC 半導體絕緣膜的成膜設備。 MIRAI 計劃於 2001年開始,2004年成功開發可對應 300mm晶圓的絕緣膜的成膜設備,由日立國際電氣公司於 2005年春開始供應,設備價格約 7 億日圓。

該設備使用 HFAIO 材料的 High-K 絕緣膜,閘極漏電流比使用 HFSiO 膜降 低約 2 位數。至於最令人擔心的 HFAIO 電子移動度低的弱點,則採用氮化(如 圖二)與氧化處理,也就是將厚度 2nm 左右的 HFAIO 薄膜與阿摩尼亞一起退 火(Annealing)氮化,之後再氧化,如此 處理順序還可以防止介電率低的氧化矽 層成長超過必要的厚度以上。電子移動 度為 260 伏特/秒.cm,為未退火前的約 2 倍,接近現在使用的氧化矽絕緣膜的 理論值(320 伏特/秒.cm),與 HFSiO 膜一樣良好。

根據 FUSI 報告(本研究也是半導體 MIRAI 計劃成果之一),利用金屬閘極與 High-K 材料(HFAIO)形成完全空乏型 SOI (Silicon on Insulator)組成 MOS 電晶體,由於 MIRAI 開發超平坦技術接合了源極與汲極,實現了現階段最短只有 6nm 的閘極長度。試作 NMOS 電晶體的閘極電壓可以容許 5 位數的變化,擁有良好電晶體的特性。又為解決閘極長



▲圖二 (a)爲只有經氧化處理的絕緣膜; (b)爲經氮化、氧化處理的絕緣膜。結果(b) 的 SiO₂層比(a)薄,改善了電子移動度低的 弱點

度變短帶來源極與汲極間的漏電流變大的問題,在源極與汲極間使用鎳經砂化 (NiSi₂)後將不純物注入 NiSi₂中,不純物經 600°C 熱處理,則會在 NiSi₂與 SOI 層的介面析出,而且已活化,因而可以防止不純物擴散至 SOI 層。這是因為源極與汲極接近通道(Channel)部份比過去傾斜(如圖三(a)),因而通道内側與源極與汲極的距離變大,漏電流就會減少(如圖三(b))。此外,注入離子使不純物析出的效果良好,加上具活化作用,注入離子只需 1 次(過去 3 次)即可抑制缺陷的發生,進而降低因缺陷引起的漏電流。

層間絕緣膜Low-K材料

積體電路内部配置了無數層的鋁配線藉以傳遞訊號,數年來,不斷地將電路微細化藉以實現高性能。事實上,不斷微細化的結果,會讓配線與配線太過於接近,因而增加訊號間彼此的干擾,導致 LSI 的運算速度無法再提昇,耗電量也跟著增加。解決之道,就是在配線

▲圖三 實現閘極長 6nm 電晶體之結構剖 面示意圖

工程採用銅取代鋁,層間絶緣膜則採用 低介電(Low-K)材料取代二氧化矽,這 些技術動向已正式運用且量產化。所搭 配平坦化的 CMP(化學機械研磨)設 備則必須是採低壓研磨。

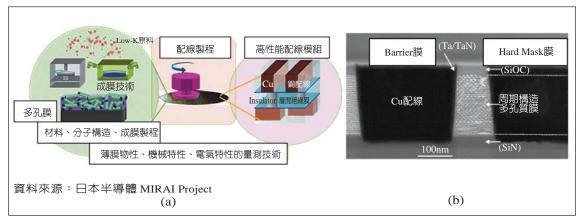
廠商動態

1.日立製作所與日立化成工業

開發下一代半導體用絕緣膜,並在 2004年美國舊金山舉辦的國際電子元件

會議上發表。所開發的是低介電係數絕 緣膜,夾在LSI電路間以防止漏電流。 一般當絕緣膜的介電率下降,壽命也會 縮短,為此先闡明劣化的機制,構成絶 緣膜的有機與無機成分中,以有機成分 特別容易劣化,於是設法改變有機成分 中部份分子的結構,抑制劣化。傳統絕 緣膜的壽命大概為10年,新絕緣膜的 壽命是過去的100倍,像汽車等使用環 境條件嚴苛的都可以充分使用。

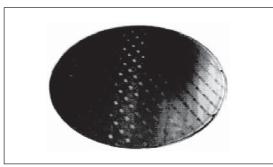
2.半導體 MIRAI 計劃


正在開發可望滿足微細化要求且具 可撓性的「Scalable 配線用絕緣膜技 術」,對Low-K絕緣材料的開發目標為 介電係數 1.5~2.0,以及具有可耐配線 製程的機械強度。總之, Scalable Low-K材料的開發,期待能持續使用到電路 線寬 45nm 世代。

研究分兩階段進行,第一階段在開 發氧化矽材料中依設計導入奈米級空孔 的技術(如**圖四** $(a) \times (b)$); 第二階段 開發利用含有機材質的氧化矽氣相成長 技術,或利用電漿將兩種以上原料分子 結合的電漿共聚合技術(如**圖五**)。已 經完成可大幅提昇材料強度的氣體處理 新技術,而且已在300mm晶圓上形成 銅配線。此外, CMP技術是多孔 Low-K/Cu 配線工程的重要課題之一。

3.下一代半導體材料技術研究組合 (CASMAT)

對 Low-K 材料的開發已經進入實用 化階段,開發中的 Low-K 絕緣材為介電 係數 2.4 左右的塗佈型多孔質結構,已 經完成兩層配線及 Low-K 絶緣材,進入


(a)開發 Low-K 與銅配線膜組之基礎技術; (b)使用具週期性結構多孔質氧化 ▲圖四 矽膜

提高製程寬容度(Process Margin)的改良 階段。

4. 觸媒化成工業公司

為日揮的子公司,與富士通、富士 通研究所共同開發線寬 65nm LSI 多層 配線用低介電係數絶緣材料,亦可對應 於 45nm LSI 的需求。預計 2006 年在若 松工廠量產,產能500公升/月,量產 產品為「NCS (Nano Clustering Silica)」 的塗佈液,目前已經開始樣品試供。 5.Espec 公司

開發在350°C高溫下高精度量測 Low-K 膜絶緣特性評估系統,本系統的 特點: (1) 350°C下對專用 TEG的 VIA 配線間 Low-K 膜施加電壓,以測定其絶 緣破壞電壓;(2)在指定時間内以間隔 方式量測電流電壓特性(I-V特性);

▲圖五 利用電漿聚合之 Low-K 膜銅配線 晶圓(直徑 300mm)之1層銅配線剖面 SEM 照片 (彩色圖請見目錄頁)

(3)在電壓一定的條件下,量測任意溫 度(最多10點)下的漏電流。

6.三菱電機公司

成功開發強度為其他絕緣膜 6 倍的 層間絕緣膜,其特點為使用稱為 "Borazine"的化合物,以及可以使用半 導體成膜設備,因此容易量產。