

IC載板的發展現況

蕭傳議

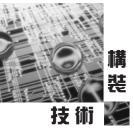
工研院產業經濟與資訊服務中心

零組件研究部 副研究員

摘 要

IC載板目前朝向BGA、CSP及Flip Chip三個主要的產品種類發展,各有不同的應用。PBGA載板是產能最大的產品,用於一般的晶片封裝;而Flip Chip的技術廣泛應用在CPU、繪圖晶片(Graphic Chip)的封裝;Flash Memory、DDR RAM等產品採用CSP載板取代SO封裝的比例增加。資通訊(ICT)類產品對IC載板的需求維持在一定程度以上,也因此IC載板仍有不錯的成長潛力。

關鍵詞


IC載板(IC Substrate)、球柵陣列(Ball Grid Array; BGA)

前言

置放IC並使其發揮作用的過程稱為IC構裝;而特別將處理IC晶片或晶粒的製程稱為IC封裝製程。IC載板(IC Substrate)即為封裝製程中承載IC的零組件,其内部有線路可以連接晶片與電路板,而功用在於保護電路、固定線路與導散餘熱,並提供零組件模組化標準,溝通晶片與電路板之間訊號。當構裝技術煎趨精密的同時,IC

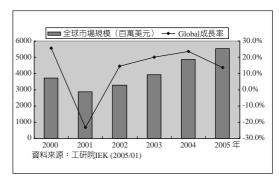
載板的重要性亦同步提高,藉由良好效能的載板及精密的封裝製程,IC的功能得以充份發揮。IC載板以BGA(Ball Grid Array)架構為基礎,BGA指封裝後的針腳矩陣型排列於封裝體的底部以連接母板。IC載板目前朝向BGA、CSP及Flip Chip三個主要的產品種類發展,且各有其不同的應用。

由下游應用產品的分析發現, PBGA載板是產能最大的產品,用於一般的晶片封裝;而Flip Chip的技術廣

泛應用在CPU、繪圖晶片(Graphic Chip)的封裝,尤其是融合Flip Chip技術的FC BGA載板,因為效能的優點及價格逐漸下降後逐漸普及。Flash Memory、DDR RAM等產品採用CSP載板取代SO封裝的比例增加。另一方面,通訊類產品如手機和網路硬體所需要的IC量也逐年在成長。整體而言,資通訊(ICT)類產品對IC載板的需求維持在一定程度以上,也因此,IC載板仍有不錯的成長潛力。

IC載板市場

一、全球市場


由於導線架無法滿足目前所有IC 封裝的物性需求,部份的封裝逐漸轉型為IC載板類型,所以全球IC載板的成長性一直很高。2004年由於全球景氣復甦,電子產業的需求回溫帶動其下游的封裝產業成長,IC載板產業則連帶成長,因此全球IC載板市場為48.6億美元。預期2005年高階覆晶FlipChip載板和多晶片模組基板MCM的技術與市場需求增加快速,全球的IC載板市場將成長到2005年的55億美元(如圖一)。

全球生產IC載板的廠商集中於日本、韓國和台灣,是主要的供應地區,日本主要的供應商有:松下電子、Ibiden、JCI、Fujitsu、Shinko等,韓國有Samsung、LG等;而台灣的廠

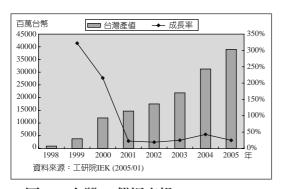
商亦進入到載板的市場,主要的生產者如表一;而歐洲和美國則著墨較少,至於中國大陸市場,因載板屬於技術層面較高的產品,因此以製造見長的中國大陸,目前尚未積極投入IC載板產業,但未來因為IC製造與封裝產業在中國大陸的發展,產業鏈的吸引效應可能有IC載板就地供應的壓力,但目前這個趨勢並不明顯。

二、我國IC載板市場及產業架構

IC載板佔IC封裝成本的4-6成,由 於台灣IC封裝產值不斷擴大,台灣的 IC載板產業相對而言具有很大的市場 發展機會。觀察我國IC載板產業的發 展歷程,由1997年日月光發展BGA技 術以來,IC載板產業快速發展,期間 不到十年的時間。配合我國的IC相關 產業和下游的封裝、測試產業,我國 的IC載板產業發展快速,1998年時產 值僅9億新台幣,2000年時已快速上升 至120億新台幣,由於1998~2000年時 的產量很小,造成因基期過小而有

▲圖一 全球IC載板市場

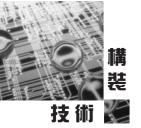
表一 台灣IC載板廠商概況


公司名稱	主要名產名	發展中產品	公司動態
南亞	Flip Chip, CSP	MCM	目前台灣最大的Flip Chip載板供應商
全懋	PBGA	Flip Chip, MCM	專業IC載板製造商,PBGA產能全球最大
日月宏	PBGA	Flip Chip, MCM	日月光集團一員,2004年積極擴增產能因應集團封裝需求
欣興	CSP	Flip Chip	穩定發展,以CSP為營收主力產品
景碩	BGAs, Cavity Down BGA	Flip Chip	專業IC載板製造商,精於Cavity Down技術,2004年產能快速成長

資料來源: 工研院IEK (2004/12)

200%以上成長率的驚人表現(如圖二)。2004年後各IC載板廠的研發和重點生產方向已導向單價和毛利較高的Flip Chip載板,預計2005年IC載板的產值可望在Flip Chip載板的挹注下,成長至390億元規模。

台灣在IC載板領域,上游的是IC 相關製造業和設計業;其下有封裝廠 的產業關聯(如圖三),所以台灣的IC 載板產業,不僅因應IC封裝載板需求 而興起,且有相關產業的奧援而使整 體產業更具發展潛力。


台灣生產載板的廠商依投資者的來源可區分為三大類,分別為原有的 PCB廠(如華通、南亞等)、下游的封裝廠(如日月光、矽品等)和IC設計

▲圖二 台灣IC載板市場

製造廠(如威盛、揚智等)。載板在台灣的發展與日本相較,可比喻為後起之秀,因應快速成長的封裝需求而成長。

南亞電路板是繼華通之後最大的 Flip Chip載板的供應商(Flip Chip載板 一般指FC BGA載板),與Intel有不錯 的合作關係;全懋和景碩為單純IC載 板的專業製造商,其中全懋深耕BGA 技術,尤其是PBGA產量全球領先,而 景碩生產各類利基型產品,尤其是其 Cavity Down技術領先其它生產廠;日 月光的IC載板廠原名日月宏,目前已 合併入日月光公司之内,以生產供應 日月光封裝需求為主,未來在產能擴 大後有機會向外供應;華通原為FC BGA載板最大供應商,但在2003年 發生與Intel合作變化後,目前正積極 改變與轉型,由於其仍具備許多技 術能力,未來則視其轉型的成果; 欣興主要以CSP類載板生產為主,其 產能擴充以穩定成長的方式進行; 健鼎原為PCB大廠,目前為因應客戶 一站購足的要求,跨入IC載板的生 產。

上	銅箔	金鹽	乾膜	樹脂基板	緑漆	鑽針、銑刀	其他
游	古河	鴻海	Hitachi	Mitsubishi	Taiyo	 右能	Ajinomoto
原	台灣銅箔	光洋	Asahi(華立)	Hitachi		台芝	(ABF膜)
材	Olib	佳龍	杜邦	南亞塑膠		尖點	
料		鈺成	長春	Pleyclad		創國	
				IC載板廠			
IC	[南亞		□華通		□日月光華通	
載	[□全懋		□台豐			
板	[□日月光(日	3月宏)	□旭德			
	[□景碩		□大祥			
	[] 欣興		□建鼎			
下				封裝廠			
游							
封				□□月元□砂品			
				□華泰			
裝							
L							

▲圖三 IC載板產業關聯圖

採用充填電鍍之雙面Via Filling TAB

以TAB方式進行顯示器驅動IC之構裝,已隨著行動電話顯示器等小型電子機器市場的成長而擴大,單面、雙面貼合銅箔的產品已經量產,這些產品的配線採用通孔電鍍,而且已經有公司完成雙面銅配線TAB構裝產品的商品化。

此種傳統的雙面銅配線TAB產品有在通孔上方無法配線的缺點;爲了配合愈來愈高密度化的需求,達到構裝高密度化的對策之一,是積極開發採用充填電鍍之雙面Via Filling TAB的構裝設計,使用電鍍完全掩埋通孔,因此除了可以在通孔的正上方開孔之外,又可以在通孔上形成焊接錫球,其構裝密度可以超越傳統的TAB,一般認爲TAB結構的多層化已成爲未來之技術趨勢,目前大企業都針對此產品進行量產試製中。

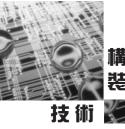
在聚亞醯胺樹脂基材的雙面貼合上銅箔,再以Filling Via方式形成50-60mm的配線,即可得到高可靠度的試製品,不但可以大幅減少自身與感應電感之外,還可以實現Via on Via, Ball on Via的設計,該項結構設計一旦量產化,其市場需求預估將從印刷電路板擴展到高密度之構裝基板。(資料來源:化學工業日報2004/12/6(9))

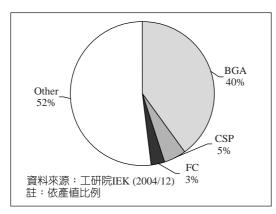
IC載板原物料概况

IC載板的上游原物料產業,可以 區分為銅箔、金鹽、乾膜、樹脂基板 (膠片)、緑漆、鑽針和銑刀(鑽針和 銑刀為製程耗材,因為耗量較大一般 也列入製程的材料)等。目前所需原 材料BT樹脂主要由日商三菱瓦斯化學 公司供應,雖有替代的原材料,但用 以取代BT樹脂則言之過早。

原物料產業的兩大宗來源,是結 構材料的供應商和製程耗材的供應 商。結構材料的供應商主要為作為基 板材料的樹脂基板,主要的來源國是 日本,供應商有供應BT樹脂基板的 Mitsubishi、Hitachi(型號1679)等, 國内亦有南亞塑膠一家可以供應樹脂 基板,有能力供應FR5和BT類樹脂基 板,但主要供應FR5樹脂基板。金鹽的 供應來源早年來自於國外的瑞士金銀 公司,但近三年來國内的供應體系抬 頭,因此國内可供應70%以上的金鹽 原料。至於作為線路的銅箔片,各廠 的採購來源不一。

由於90%的IC載板需要BT樹脂基 板作基板材,除樹脂基板的供應可能 受Mitsubishi限制外,其餘的材料大致 上能獲得充份的供應。其它有兩點值 得注意,一是Mitsubishi有將近半數的 產能供應予國内IC載板廠,因此提高 對Mitsubishi的BT樹脂基板廠商議價實 力;二是目前Flip Chip製程多半採原樹 脂基板,後貼ABF膜作細線路製程,


而ABF膜由日本Ajinomoto獨家供應, 如不改變減少製程對ABF膜的依賴 度,則未來在Flip Chip產量擴大下,將 受其限制。


封裝市場

IC載板產業鏈的下游為封裝產 業,台灣境内的封裝廠計有36家,以 日月光和矽品的產能較大,日月光並 於2003年第四季時超越Amkor成為全 球最大的封裝廠,因此台灣的封裝產 業具有相當大的生產實力。國内的封 裝廠以代工業務為主,國内與國外訂 單比約為48:52,訂單的來源主要為美 國、日本和大陸設廠的各系統廠和 IDM廠。

由於IC 載板佔封裝原材料成本很 高,加上高階封裝對IC載板的依存度 升高的影響下,IC 載板與封裝產業的 互動情形將更加密切。台灣BGA和 CSP載板可以由台灣自行供應,但台灣 高階封裝用Flip Chip載板則較倚重日 本,目前有部份的Flip Chip載板台灣可 自主供應,但是還有可以成長的市場 機會。

以封裝產業的觀點,有44%營業 額的產品使用IC載板封裝(其中BGA 佔36%; CSP佔5%; Flip Chip佔3%, 合計44%);若以封裝的數量來看, 使用IC載板的量佔18.2%(其中BGA佔 15%; CSP佔3%; Flip Chip佔0.2%, 合計18.2%),可以看出IC載板的封裝 已佔有一定的份量,隋IC對於電性、

▲圖四 台灣各類封裝比例

散熱、佈線密度的要求提高,使用IC 載板封裝的比例將會逐年提高。因為 不同封裝對於IC載板的要求不一,故 若封裝型式和性能因應系統產品發展 的趨勢改變,則IC載板的產品組合亦 將隨之改變。

結論

台灣IC產業的發展歷年有不錯的成長,隨著IC產業的壯大,封裝的關鍵零組件-IC載板,具有成長的機會。以下整理IC載板產業的現況:

1.Flip Chip/MCM是2005年載板廠的發展重點

由於一般IC載板產品(如4層PBGA等)的毛利趨於微薄,因此IC載板製造商各自發展利基性產品,如FCBGA、微小化CSP、Cavity Down等毛利較高的產品。Flip Chip目前已可以製作到1mil (25µm)的線寬/線距以下,未來在高I/O埠設計的趨勢下將往18µm以下製作。而由廠商的產品結構,亦可發現 Flip Chip/MCM是各廠列為重點發

展的項目,因此2005年Flip Chip/MCM 是發展重點。

由技術的角度觀察,Flip Chip載板符合低訊號干擾、高訊號傳輸量、電性佳、最低連接電路損耗和有效率的散熱途徑等優點,結合原先BGA和CSP技術,相較於BGA和CSP載板,Flip Chip載板的產品表現和成長性仍舊亮眼,尤其在Flip Chip載板的製作技術不斷提高,成本不斷下降的助力下,Flip Chip載板將有可觀的應用量。預估2005年Flip Chip載板明顯有較高的應用,其應用範圍由處理器(CPU)延伸至繪圖晶片和需要高I/O埠或散熱需求高的晶片設計上。

MCM載板未來亦有很好的應用性,目前的技術尚未成熟,但如同Flip Chip技術一樣,在封裝技術演進的過程中,MCM技術的成長使多晶片封裝的製程實用性大增,而MCM載板的需求量也將增加。

2.IC載板廠與封裝廠的合作關係相形 重要

由市場的現況和IC載板產業的生態觀察,因IC載板的專業性較高,目前僅日月光一家將IC載板納入生產體系之中,封裝廠矽品與IC載板廠全懋是關係企業外,其餘IC載板廠多半和其它封裝廠維持供應關係,而在封裝製程愈依賴IC載板組件的趨勢下,封裝廠也不會採用風險較高之單一IC載板供應來源的政策。IC載板和封裝在未來分工的趨勢將愈益明顯,而各IC

載板或各封裝廠將互有合作關係,情 形類似於交叉的網線,因封裝產業的 產品數量多,因此有產能規模較大的 IC載板廠支持,可以確保IC載板組件 不至短缺,而IC載板廠和封裝廠的合 作,同時確保產品的的輸出管道,因 此中下游合作是未來的發展趨勢之

另一方面,IC載板的精密度已大 幅提高,產品需要專精的生產技術, 且產品結構的調配亦需敏感配合市場 的需要,因此專業的IC載板製造商有 存在的必要,是故中下游合作的機會 將大於中下游整合。

由於IC載板目前已是封裝的關鍵

組件,而台灣已是全球封裝重鎮,因 此台灣的IC載板廠商,已佔有發展IC 載板自製的有利位置,可以提升台灣 在後段IC製程的全球競爭力。

3. 材料開發的重要性

日本原料廠仍是IC載板原物料供 應的關鍵,由於樹脂基板和ABF膜等 重要原料,主要的供應權在Mitsubishi 等日本材料廠,因此若要進一步提高 國内幾家IC載板廠商在全球的佔有 率,則必需擺脫原料供應來源的箝 制,在國内就近建立材料供應商,將 使IC載板更具有競爭力。因此尋求與 下游封裝廠和系統的合作,是一個有 效可行改變基礎原料的方式。

本公司以專業.優質之翻譯見長 屢獲各公民營交通機構之倚重並推薦

優質筆譯/專業口譯/公證服務/人力派遣

Tel:02-2705-3335 Fax:02-2705-3330

E-Mail:famous@fmi.com.tw 台北市安和路二段七號七樓之