以自發性溶解--再成長製程 建構中空形態二氧化矽膠體

Formation of Hollow Silica Colloid Through a Spontaneous Dissolution-Regrowth Process

梁凱玲

國立成功大學(National Cheng Kung University) 化學系

本文主要說明非晶態SiO2膠體水溶液分散液,自發性地由實心球體形態轉變為中空球體的 形態,實心-中空的轉換速率隨著溫度上升而上升,較高的反應溫度會使SiO2殼層變得較粗糙, 可以藉由反應溫度來控制殼層的孔隙性。SiO2膠體以不同濃度的NaBH4反應,會有不同的SiO2 中空結構形成,NaBH4濃度愈高,實心-中空轉換速率愈快,亦可利用此方法製造中空奈米結 構,或以SiO2膠體包覆不同奈米粒子。

This article describes the amorphous silica colloids dispersed in an aqueous solution of NaBH₄ that undergoes a spontaneous morphology change from solid to hollow spheres. The rates of the solid-to-hollow conversion increase with the reaction temperature. A higher reaction temperature also increases the roughness of silica shells. The shell porosity can be tuned by controlling the reaction temperature. The rates of the solid-to-hollow conversion increase with the NaBH₄ concentration. Some hollow structures transformed with a various concentrations and others allow transformation particles into yolk-shell structures, which have potential for use as nano-scale reactors and controlled-release vehicles.

關鍵字/Key words 矽二氧化矽膠體(silica colloid)、實心–中空結構轉換 (solid-to-hollow structure conversion)、 核–殻結構(core-shell structure)

一、前言

二氧化矽(silica)的奈米膠體可應用在許 多領域,如生化學、地質學、醫療科學等⁽¹⁾。 工業上在純化、吸附、分離、光學裝置及催 化等也需應用此技術^(1,2,3)。因此二氧化矽在水 溶液的化學變化探討,是大家極感興趣探討 的主題,因為二氧化矽的多樣性及其化學交 互反應,使其溶解與成長相關的探討更加複 雜且具挑戰性。這些複雜的反應中,包含了 發展新功能結構奈米材料的機會,例如:系 統化研究二氧化矽膠體粒子的溶解與再成 長,已經可以控制成核與長晶,並能更進一 步地控制晶體大小與形狀。

非晶態二氧化矽膠體(amorphous silica colloid)經水溶液分散後,可自發性地由實心 固態球體形態轉變為中空球體形態。中空二 氧化矽的奈米膠體粒子,可以應用於控制催 化和藥物傳輸⁽³⁾,例如:包覆具磁性的氧化鐵 或螢光材料CdSe製成的核-殼粒子(core-shell particle)^(4,5),放入生物體作為追蹤之用。奈米 級的中空球體亦可以用來作為奈米級的反應 槽與控制釋放等應用,可控制物質釋放時 間,在生醫材料與工業用途上具有實際應用 的功能。此技術提供一種有效製備奈米中空 二氧化矽結構的自身模板途徑⁽⁶⁾,相較於廣泛 使用乳化聚合方式或乳化液滴作為模板包覆 的方法,其具有製程簡單、易控制、有效、 可放大(scalable)及粒徑分佈窄等優點。

二、實心-中空結構轉換機制

非晶態二氧化矽膠體在水溶液中的結構 改變機制⁽³⁾(圖一a),係經由非晶態二氧化矽 膠體先溶解,擴散至外圍與溶劑接觸,經 NaBH4幫助溶解後再重新成長,形成一層薄 球殼後,其餘已溶解的SiO2膠體再慢慢吸附 於球殼上,使球殼逐漸增厚而內部核逐漸減 小,最後形成一中空球體結構。實驗詳細步 驟為先利用 Stober Process⁽¹⁾: TEOS (tetraethoxysilane)的水解及縮合反應,製備 SiO₂奈米粒子(粒徑控制在200~400nm)(圖一b), 再混入適當濃度的NaBH₄,於51℃反應6小時 後,由TEM可以看到所有SiO₂實心球體粒子 都轉換成中空的奈米粒子(圖一c),而56℃的 殼層厚度增加且依稀可見孔隙(圖一d)。通常 在這反應過程會加入poly(vinylpyrrolidone) (PVP)當作分散劑,以防止中空球體粒子之間 的聚集。

非晶態SiO₂膠體結構是由Si與不同比例的 O和OH相連結而成(圖二),其化學組成通式 為:SiO_{n/2}(OH)_{4-n}; n=1~4

- Q1 : (Si-O)-Si(OH)₃
- Q2: (Si-O)₂-Si(OH)₂
- Q3 : (Si-O)₃-SiOH
- Q4: (Si-O)₃-SiO-

NaBH₄水溶液會將Q3、Q4還原成Q1、 Q2結構,使Si-O鍵結斷裂而幫助其溶解。一 開始由Stober Process製成的SiO₂奈米粒子直

- (a) 玻璃態SiO₂膠體以自發性溶解-再成長製程建構中空 SiO₂膠體之機制示意圖;
- (b) 剛製備的SiO2球體TEM;
- (c) 與0.06g/ml NaBH₄於51℃反應6小時之TEM;

(d) 於56℃反應5小時之TEM

▲圖一 非晶態二氧化矽膠體在水溶液中的結構 改變機制(scale bar=200nm)

▲圖二 非晶態SiO₂膠體結構

匤欄

徑約200~400nm,因為顆粒逐漸變小而使表 面能上升,同時也增加其與溶液接觸的面 積,進而使結構轉換過程更容易進行。溶解 後因外圍向外擴散,接觸NaBH4分解成的 NaBO2幫助其溶解-重組,因Q1、Q2的結構較 Q3、Q4不穩定,故藉由NaBH4的幫助,最後 在外圍會重新鍵結為Q3、Q4而形成球殼。由 動力學的觀點來看,再成長後的自由度增加 (圖三),Si-OH反應由一個自由度變為H⁺+H₂O 兩個自由度, $\Delta G = \Delta H - T \Delta S$;亂度增加代表其 ΔS 增加,使自由能變化 ΔG 偏負,故反應趨向 自發現象。

重新鍵結一球殼後,內部持續溶解的小 分子因有較大的表面能會吸附於球殼上,造 成內核持續萎縮而殼層逐漸增厚,此為熟化 現象(ostwald ripening)⁽⁷⁾,最後形成中空球 殼。於自發條件中的轉換過程,實心-中空的 轉換可於室溫自發,也可以不使用分散劑 PVP,不過需要較長的反應時間。圖四(a)~(f) 顯示,加入0.06g/ml NaBH4後於室溫反應10 天的變化。在反應過程中前兩天,膠體粒子 維持原本的球狀,只有粒徑改變(平均粒徑約 400~292nm)(圖四a,b)。樣品沉浸於NaBH4更 多天後,球體的粒徑減小,然後發現每個球 體外圍,有一薄殼層圍繞著球體。在TEM圖 中,發現有崩解的現象,可能是因為乾燥過 程中使薄殼層崩解於碳的網格上,可推測此 時的殼層還很軟且脆弱(圖四c),此時球殼的 平均半徑約為360nm,實際上可能更小一些, 因為TEM於網格的乾燥過程中,影響了它的 形狀。當反應繼續進行,核的半徑持續縮 小,由第5天的147nm到第6天的127nm;而球 殼則逐漸增厚,變得比較堅硬,經過TEM乾 燥後仍可維持其立體的球體形狀(圖四d.e)。反 應到第10天時,SiO,核完全消失而留下中空 且完好的球形殼,平均半徑約為353nm。繼續 延長反應時間到第14天,則無再觀察到中空 結構的幾何變化和厚度變化。

三、溫度的影響

實心-中空的轉換速率隨溫度上升而上 升,T. Zhang, J.P. Ge⁽¹⁾的實驗數據顯示,在 51℃完成轉換需反應6小時,而在61℃則只需 3小時;因此可推測反應為吸熱反應,雖然是 自發但仍需克服活化能。實驗也顯示較高的 反應溫度會使SiO₂膠體殼層變得較粗糙,51℃ 的殼層較為平滑(圖一c),而56℃的殼層厚度 增加且依稀可見孔隙(圖一d)。因此可藉由反 應溫度來控制殼層的孔隙及滲透性,而具有 作為分子篩應用的潛力,對分子穿過殼層的 大小具有選擇性。由圖一(c,d)中可見當反應溫 度上升,SiO₂膠體殼層變得較厚且更粗糙, 過程中常加入PVP當分散劑,以防止中空SiO₂ 膠體聚集。

四、NaBH₄濃度的影響

SiO₂膠體和不同濃度的NaBH₄反應,會形 成不同的SiO₂中空結構(圖五)。室溫下將濃度 為 0.03g/mL SiO₂ 膠 體 溶 液 , 分 別 加 入 0.03g/mL、0.045g/mL、0.05g/mL及0.06g/mL 的NaBH₄溶液反應6天。在低濃度的NaBH₄ (0.03g/mL)中,SiO₂膠體反應6天後仍然為實 心球體,但是平均粒徑由原始的416nm縮小了 9nm。以濃度0.045g/mL的NaBH₄溶液反應6 天,在SiO₂核的表面有一層薄殼層形成。當 NaBH₄濃度提升至0.05g/mL及0.06g/mL, SiO₂ 的 核 / 殼 直 徑 降 至 約 230/393nm 及 127/354nm,而且核-殼之結構變得更加規律 且易辨認。若反應時間夠久,且NaBH₄的濃 度維持在0.045g/mL以上,則SiO₂膠體最後會 轉變成中空結構。

在低濃度NaBH₄(0.03g/mL)中,SiO₂膠體 的核徑沒有明顯的變化(圖六a)。當NaBH₄濃 度在0.045g/mL以上,核徑隨著反應時間呈線 性下降,且濃度越高者,下降速率越快。在 0.045g/mL NaBH₄溶液中反應約21天後,原始 的實心球體完全轉變成中空殼層;而在 0.06g/mL NaBH₄溶液中,只需反應6天,原始 的實心球體即可完全轉變成中空殼層。由核 徑(圖六a)與殼徑(圖六b)比對,反應開始後核 徑與殼徑都呈下降趨勢,在第一、兩天各 NaBH₄濃度的殼與核有相同的直徑,顯示尚 未有殼層形成的趨勢。2天後殼徑開始上升而 核徑仍持續下降,顯示薄層開始在核的表面 形成,殼徑成長到第3天後約維持定值呈動態 平衡。

濃度0.03g/mL以上之NaBH4溶液,隨著 核慢慢分解,殼的厚度漸漸增加。NaBH4濃 度越高者,所得之殼層厚度越小。此原因係 SiO2在自發性地進行溶解-重組過程中,由反

(a) 剛製備	;
---------	---

(b) 經2天殼徑: 292~400nm;

(c) 經3天殼徑:360nm TEM圖,乾燥過程崩解於網格上,足見 殼很軟;

(d) 經5天核徑:147nm;

(e) 經6天核徑:127nm;

(f) 經10天殼徑:353nm, 殼夠硬夠足以厚維持3D的立體球狀

▲圖四 於室溫未使用PVP分散劑玻璃態SiO₂自發 性溶解-再成長建構中空SiO₂膠體

▲圖五 SiO₂膠體分別和不同濃度的NaBH₄在室溫 下反應6天後的TEM (a)0.03g/mL;(b)0.045g/mL; (c)0.05g/mL;(d)0.06g/mL NaBH₄

不同濃度的NaBH₄(■0.03g/mL●0.045g/mL▲0.05g/mL ★0.06g/mL NaBH₄)

▲圖六 SiO₂膠體分別和不同濃度的NaBH₄,在 室溫下反應6天後與反應時間之變化圖 (a)核直徑;(b)殼直徑

▲圖七 在51℃下NaBH₄溶液中反應10h、6h、10h 所形成的核-殼結構的TEM (a) Au@SiO2球體;(b) Fe3O4@SiO2球體; (c) α- Fe2O3@SiO2橢圓狀

應開始到核的消耗,SiO₂膠體以適當的速度 進行溶解,而SiO₂重組成長則較慢才開始進 行;反應剛開始時溶液pH值很高,Si-O鍵被 分解導致玻璃態SiO₂表面被破壞。SiO₂在 NaBH₄溶液中反應兩天後,才有重組成長之 現象,導致薄層的直徑慢慢地比萎縮中的核 直徑大。高pH值的NaBH₄溶液很易於初始階 段就溶解膠體表層,釋放出monosilicate 和 polysilicate,使溶液呈過飽和狀態造就非均態 晶體成核環境,同時NaBH₄分解成NaBO₂的濃 度增加,促成重組,提供中空殼層成長之良 好環境,導致在SiO₂核的表面重組。

五、核-殼結構

除了純固態SiO2膠體,SiO2膠體包覆不同 奈米粒子亦可利用此簡單方法製造核-殼奈米 結構。SiO2膠體包覆於膠體結構上,使其形 成核-殼結構。在Au-SiO2核-殼粒子藉著和 NaBH4反應可以形成核-殼奈米結構(圖七a)。 金奈米粒子不在中空SiO2球體的中心位置, 是因為原始SiO2殼層的消耗被較薄的殼層圍 繞空隙所取代。在催化應用上,多孔性殼層 所包覆的金屬奈米粒其觸媒活性和選擇性都 大有改善⁽⁸⁾。

研究顯示,被SiO₂膠體薄層包覆的Fe₃O₄ 膠體可以被轉換成核-殼結構(圖七b)。因為 Fe₃O₄具磁性,故運用外磁場可以有效地操作 這樣的核-殼複合奈米結構微粒⁽⁹⁾。因具有此 特性,此複合材料微粒是生物醫學應用上的 最佳選擇,例如目標藥物的傳遞。

不僅球體粒子的SiO₂膠體殼層可以自發 性成長,非球體粒子亦可,橢圓狀的 α-Fe₂O₃@SiO₂核-殼結構粒子已被合成出來 (圖七c),並且和NaBH₄溶液反應而成功地轉 換成核-殼結構,此複合材料還可應用在光旋 轉漫射的研究上。

六、結語

SiO₂膠體在NaBH₄水溶液中自發性地由實 心球體形態轉變成中空殼層形態,在轉變 後,中空殼層依然由SiO₂所構成。殼層之多 孔性可依反應溫度而調控,故可根據其多孔 大小,控制通過殼層之分子的擴散,溶液的 高pH值及NaBH₄的分解促進中空殼層的形成。

參考文獻

- 1. http://en.wikipedia.org/wiki/Silicon_dioxide
- Colloidal Silica Fundamentals and Applications edited by Horacio E. Bergna 2005
- T. Zhang, J.P. Ge, "Formation of Hollow Silica Colloids through a Spontaneous Dissolution-Regrowth Process", 2008
- 4. http://www.cycu.edu.tw/~nanotech/file/092302.pdf
- Chen-Sheng Yeh, C. H. Su, H. S. Sheu, C. Y. Lin, Y. W. Lo, Y. C. Pu, J. C. Weng, D. B. Shieh, J. H. Chen, C. S. Yeh,"Nanoshell Magnetic Resonance Imaging Contrast Agents", J. Am. Chem. Soc., 2007, 129, 2139-2146.
- Chang-Lin Chen, Soofin Cheng, Hong-Ping Lin, She-Tin Wong, and Chung-Yuan. Mou, 2001, "Sulfated Zirconia catalyst supported on MCM-41 Mesoporous Molecular Sieve" Applied Catalyst. A, 215, 21-30.
- "The theory of Ostwald ripening" Journal of Statistical Physics, 1985 – Springer
- P. M. Arnal, M. Comotti, F. Schuth, "High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation" Angew. Chem. 2006, 118, 8404
- P. M. Arnal, M. Comotti, F. Schuth," High-Temperature-Stable Catalysts by Hollow Sphere EncapsulationAngew". Chem. Int. Ed. 2006, 45, 8224
- 10. J. Ge, Y. Hu, Yin," Formation of Hollow Silica Colloids through a Spontaneous Dissolution-Regrowth Process"Angew. Chem. 2007,119, 7572