相轉移光罩技術

》 游秋山

台灣積體電路公司

光罩絜造處 副處長

前言

在半導體製程技術要求日益精細的 情況下,微影成像技術已主宰著半導體 技術能否繼續往下縮小的重要角色;而 光罩技術更是微影成像中不可或缺的重 要一環。有先進的光罩技術可延長同一 代微影機器設備的使用壽命,亦可節省 製程成本。本文將提及的相轉移光罩製 造技術即具有此特性。本文將依次討論 相轉移光罩的概論及原理、製程技術及 其在成像應用上的好處。

導 論

在介紹相轉移光罩之前,讓我們先 回顧一下兩個極為重要的光學參數n跟 K^{(1)。} 1. K= Extinction Coefficient

如圖一所示,當一光線通過一介質 (厚度為d)時其強度由Io減為I,根據 Lamber's Law, I = Io exp (- α d),其中a = $4\pi K/\lambda$; λ 為此光之波長,而 α 即稱為此 介質之吸收係數(Asorption Coefficient)。當一薄膜介質K = 0即稱為透明薄 膜;而K \neq 0時,即稱為吸光薄膜。

2. n= Refractive Index

n折射率,即為光速在真空中與其在介質中之比(n > 1)。

n及K兩者皆為物質之物性,且皆為 波長及物質成份之函數。

光程差,如圖二所示,若有二光 束:其一通過一介質,光速為Vm與另一 不通過介質之光束(Vo)相比,兩束光到 達屛風之時間分別為t₁與t₂,則

半導體 IC

$\Delta t = d\left(\frac{1}{V_m} - \frac{1}{V_0}\right) = \frac{d}{C}(n_m - n_0)$

就波動觀點言, $T = \frac{\lambda}{C}$ 而其相位差為:

$$\delta = \frac{2\pi\Delta t}{T} = \frac{2\pi\Delta t \cdot c}{\lambda} = \frac{2\pi d}{\lambda} (n_m - n_0)$$

在空氣中n。=1

圖三列出幾種常見之薄膜的n及k 値。理論上,這些材料皆可達到光之相 轉移功效。但在實際生產應用上,除了 此特性外,另外須考慮的特性有耐酸 洗、耐鹼洗、耐曝光性、材料穩定性及 成本等等。

相轉移光罩即利用此原理使有相轉 移之光束與無相轉移之光束產生破壞性 干涉,藉而提升解晰度,如圖四。

相轉移光罩之 種類

在文獻(2)中,常 見的相轉移光罩有很 多種,如表一。

I.Levenson Type 即在一般光罩上 使用相轉移材料,使 相鄰之透光區的光相 位差為180°,藉以形 成較好(較大)之光 強度對比。

2. Subresolution Type

在透光區之兩邊

各開一小區之透光區(無法在晶片上成 像),使主像兩邊有二相位差為180°之 透光區,藉以提高解晰度。

3. Rim Shifter

一般常用在接觸層(Contact Layer), 即在開孔之四邊有一區為相轉移材料, 藉以形成較強烈之強度對比,即較好的 解析度。

4. Attenuated Type

即將Type C之銘薄膜全部去除,以 低穿透度之相轉移材料(<8%)形成所要之 圖形。事實上,此相轉移材料之穿透度 與所成形之強度對比(Intensity Contrast) 有直接之關係。

5. Unattenuated

即所使用相轉移材料之透光性極 高,形成暗區或暗線的地方是兩束相位

▲圖四 相轉移光罩與普通光罩之成像結果

表一 各種相轉移光罩之比較

Thuse shift Husking Teeninques							
Reticle type		A. Conventional	B. Levenson	C. Subresolution	D. Rim shifter	E Attenuated	F. Unattenuated
Cross section		chrome	chrome shifter	chrome shifter	shifter chrome	shifter chrome	shifter
Electric field on reticle	$\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$	<u>. 1000</u>					
Electric field on wafer	$\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$	<u> </u>	<u></u>	-48-48-		-\\\\\.	<u></u>
Intensity in wafer	1_0 I	<u></u>			Norton Donton _	->^^^	
Also called			Alternaling	¥ Outrigger ¥ Auxiliary ofr assist	¥ Edge emphasis ¥ Self-abgned	¥ Self-aligned	¥ Chromeless ¥ Shifter only

Phase-shift Masking Techniques

差為180°的交界面上。因此,在晶片上 暗/明的頻率比在光罩上的要大。

常用相轉移光罩之 製程技術

在文獻中有很多種相轉移光罩已被 提出,但考量量產製造上的困難度及製 造成本,僅有少數真正被採用在生產晶 圓上。一般而言,相轉移光罩常被用來 延伸現有曝光設備的壽命,例如使用Iline Stepper及I-line PSM以延後DUV Scanner須要的時間,以節省成本。

接觸窗一般是整套光罩中最先使用 相轉移光罩(PSM, Phase-Shift Mask)的: 常用型態有兩種,一為Rim-Type,另一 為Attenuated Type。

1. Rim-Type

一般製造此型光罩是將銘膜及相轉 移材料經由電子束成像及蝕刻一次而 成。於第二次塗佈光阻及電子束成像, 而將銘膜往内推,使得銘膜的開口比相 轉移材料的開口要大,如圖五所示。而 兩者之差距則由晶圓上微影成像的結果 決定之。

另一種製造方法則僅須要一次光阻 塗佈如圖六所示。主要是在電子束曝光 時連續曝光兩次,但只做一次顯影。之 後, 銘膜及相轉移材料則一路蝕刻到 底。再用氧之電漿使光阻後退, 再將銘 膜蝕刻, 使之後退, 形成銘膜與相轉移 材料之開口間隔。

此類型之相轉移光罩優點在於可引 用較高穿透度之相轉移材料,藉以提高 晶圓上微影成像之解晰度,但此技術有 一極限,即設計準則(Design Rules)很小 時(即兩個接觸靠很近時),其間之銘 膜常會剝落,以致在光罩製作過程中造 成大量顆粒污染(Defects)及微影成像之 失真。

2. Attenuated Type

即使用一低光穿透度(6~8%)的相轉 移材料,而無銘膜環繞其週圍。因為沒 有銘膜,所以無法使用高光穿透率之材

▲ 圖五 Rim-APSM (0.8µm hole)

▲ 圖八Process flow forAPSM Fabrication

料。此類型光罩的製造方法與Rim Type 極為相似。第一次光阻塗佈及電子束微 影成像後,即一次蝕刻穿過銘膜及相轉 移材料。以第二次微影及蝕刻去除所有 的銘膜,僅留下成像區之邊緣(Image Border),如圖七(a)。

另一種作法,也是只須一次光阻塗 佈及電子束之微影成像,如圖八所示^(3,4) 。兩次曝光間隔,即一小光阻凸出物, 可藉氧之電漿以去除之。此型態光罩較 無設計準則上之考量,且亦可應用於閘 層之圖型,如圖七(b)所示。

迄今,在相轉移光罩技術,以上述 兩者最被廣泛採用。相轉移光罩除了前 述之製造外,後段的檢測及修補更是一 門深具挑戰性的工作。常見之相轉移光 罩的瑕疵有不透光及透光兩種(Opaque and Clear)。前者如銘膜殘留(Cr Residues):後者如小針孔(Pin Hole)。這 些Defects是否須要修補,或要修補到什 麼程度,甚至修補後可能留下之損傷 (Damages)都需以晶圓上曝光(Wafer Prinlability)的結果予以判定。在修補過 程中常有一技術瓶頸,即一般修補機器 在修補缺口時,只能填上碳膜(Carbon Films):而碳膜與相轉移材質之折射率與 吸收係數不同,故要補上去之碳膜與原 來相轉移材料之透光率及相位移角度是

半導體 IC

▲圖九 一般0.24µm光罩之微影結果

不可能相等的。是故,在補缺角時結果 是否完美,須以模擬軟體(Aerial Image Simulation)或晶圓曝光結果加以佐證。

Levenson PSM最近在業界引起一番 討論熱潮,可用或不可用?要用時,應 用在那一代的技術?時有軟體業者提倡 以248nm曝光機器和Levenson PSM,可 取代193nm曝光機器。但據實而論,因 為此技術雖然可以將248nm技術延伸至 0.13µm,但後段製程之檢測和修補似乎 至今仍無法配合。尤其是,迄今沒有檢 測機器可逮到10或20度的相位差瑕疵; 亦沒有機器可在石英板做適當之修補。 更可憂的是沒有機器廠商把這些相關技 術列入未來一、兩年内之發展重點。所 以Levenson PSM,迄今,在業界還是停 留在熱烈討論當中。

微影成像結果

在晶圓的微影成像技術 中,相轉移光罩常被用來增 加製程能力或延伸微影機器 設備的壽命。如圖九所示, 以一般Binary Mask(僅有銘 膜在石英上)用248 nm之 Scanner,將0.22 µm之接觸 窗曝在晶圓上之製程寬度 (Process Latitude)或DOF(景 深)遠比圖十之Attenuated 相轉移光罩小很多。就整體 微影成像從晶圓角度來看, 當然是以用相轉移光罩較為 便宜,尤其是對每片光罩之 晶圓產量很大時。

結 論

如前所言,相轉移光罩 技術是用可被用來增加微影 製程能力或延長現有機器設 備使用年限的方法之一。一 般以接觸窗用得最多,迄今 全世界相轉移光罩用量大概 只有一般光罩(Binary Mask)

的1%。但隨著技術的提升,及先進微影 設備的可能來不及提供,相信相轉移光 單技術之普遍性會慢慢增加。而且,其 使用範圍可能從接觸窗開始擴展至閘層 及其它,但相轉移光罩技術之困難度比 一般光罩高,因而造價高且良率低,不 過相信在193 nm微影機器來臨之前,光 轉移光罩將扮演舉足輕重的角色。

参考資料

- C.S. Yoo, "tsmc, semicon-ductor processing," June 1990.
- 2. Pieter Burggraaf, 42. Feb. 1992 "Semiconductor International".
- S.D. Tzu, et. al., US Patent: 5783337.
 1998.
- 4. S.D. Tzu and C.S. Yoo, et al., P. 77, "Digest of papers photomask Japan "99".

