金凸塊技術

與晶圓封裝的應用

黃祿珍 頎邦科技股份有限公司 工程部 副總經理

凸塊(Bump)技術在半導體封裝的應用有愈來愈多的趨勢,

其實凸塊技術的發展已有將近30年的歷史,

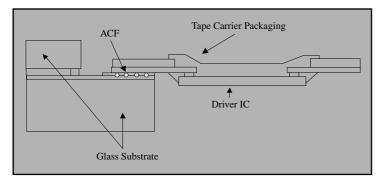
從最早期的金凸塊的應用及錫鉛凸塊的應用迄今,沒有多大的改變。

近幾年來凸塊技術會再有如此熱烈的反應,主要是市場面的擴大,

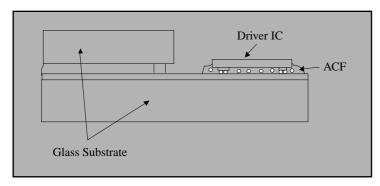
例如LCD市場的擴大帶動TAB or TCP 產品需求增加,

而以金凸塊為接合點的TCP封裝技術服務相對的市場就增加。

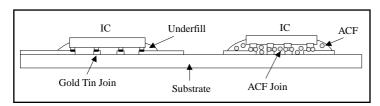
而覆晶(Flip-chip)結合技術需求增加,


也帶動了錫鉛凸塊製程的需求,

因為凸塊種類繁多,以下僅針對金凸塊做一技術簡介及產品應用。


金凸塊的產品應用

金凸塊 (Gold Bump) 的產品應用主要是在LCD產業的IC元件結合,比較有代表性的為 Tape Carrier Packaging (TCP), Chip On Glass (COG)如圖一所示,在TCP的IC元件結合中,外引腳Outer Lead Bonding (OLB)是將TCP結


合至LCD的玻璃基板上,而內引腳 Inner Lead Bonding (ILB) 和IC上的金凸塊相互結合,這是目前在大面積LCD上所用的IC元件結合技術,至於小面積的LCD基板上IC結合技術主要為Chip On Board (COB)及較先進的Chip On Glass。COG的結合技術是將控制IC直接以覆晶的方式結合至玻璃基板上,如圖二所示,控制IC的結合點是以金凸塊與異方性導電膜的金

圖一 The structure of Tape Carrier Packaging and Glass Substrate

圖一 Chip on Glass assembly and its structure

圖三 COF的元件結合方式

屬顆粒與玻璃基板上的線路互相連接, 形成控制迴路。

COG的結合技術應用在較小面積的玻璃基板,理由是產品單價及製造成本為考量因素。因為此項製程將IC以異方性導電膜反轉結合在玻璃基板上,異方性導電膜的重工性(Rework)並不好,且易造成基板及IC的損傷,所以在高單價大面積的LCD基板上大多有10 20個控制IC在LCD上,若因其中一個不良而且不能重工(Rework or Repair),造成的損失則非常可觀,再加上已既有的產品結構,並不是想改就可改,除非有重大的價格及技術因素,要不然大面積的

LCD面板和IC的結合,還會是以TCP為一 主流技術,而COG則會漸漸取代目前的 COB的IC結合方式,因為其方便的結合 方式可能減化製程 ,讓小型的模組更容 易組裝及生產。

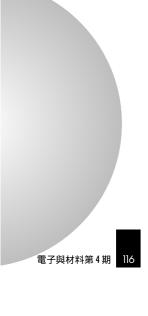
COF(Chip on Film)是近來比較受到注意的元件結合技術之一,其結合方式是截取TCP及COG的各項優點。TCP是以軟性材料當基板,而COG是以覆晶的方式結合,所以COF可以是軟性基板再加上覆晶結合方式的組合,軟性基板的供應商很多,而且價格便宜,不像TCP的Tape供應商只有那幾家,價格也居高不下,在封裝產業使用自然不普遍。例如圖三所示,其結合點是以金凸塊為結合材料,當然其結合方式而引出不同種類的COF。未來何種會成主流,則依市場、價格及量產性而定了。

金凸塊的製程

金凸塊的製程流程非常短,大致分 為:

- (1)Under Bump Metal (UBM)的金屬 濺鍍
- (2)黃光製程
- (3)電鍍製程
- (4)金屬蝕刻製程
- (5)熱處理。

如圖四所示為標準的金凸塊製程流程,在這製程流程中,除了電鍍製程以外,均和薄膜製程相同的,以下是對各項製程作一簡單介紹。


一.濺鍍製程 (Sputter)

濺鍍製程是以真空濺鍍的方式將 UBM濺鍍至晶圓表面上,此步驟的製程,在凸塊製程中是控制品質的第一步,因為UBM具有兩項功能:

(1)Diffusion Barrier

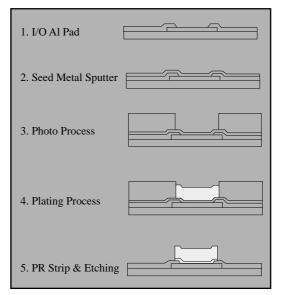
(2)Adhesion Layer。

濺鍍的品質直接影響產品的可靠度 , 各

個公司所使用的金凸塊UBM材料大致相同。大都是以TiW/Au為UBM及當作電鍍的導電層。製作方式是以真空濺鍍或是真空蒸鍍方式將TiW/Au膜鍍至晶圓上,作用之一的Diffusion Barrier是防止鋁和金的相互作用而破壞金屬層的結構,因為鋁和金可以形成很好的合金,但是合金的形成會造成鋁層的破壞,所以一層Diffusion Barrier 是要防止這兩金屬相互反應,UBM另外一項功能是當作接著層(Adhesion Layer)。凸塊是結合Inner Lead及IC 鋁墊的一個介質,而金和鋁墊的結合面是最脆弱的,所以中間的UBM就成為其接著介質以增強其機械強度。

二.黃光製程

黃光製程是先在晶圓表面塗佈一層 光阻, 這光阻的厚度依凸塊的高度而 定,通常金凸塊的高度為12µm~25µm, 則光阻的厚度可控制在15μm~30μm,至 於使用正光阻或是負光阻則依各家製程 選擇而定。這需要配合電鍍液及其電鍍 條件,因為光阻製程之後是電鍍製程, 而光阻在電鍍液裡要非常穩定才有可能 完成電鍍製程。光阻塗佈烘乾之後則進 行曝光動作,曝完光顯影後的光阻,是 在晶圓上把需要電鍍區域的孔洞顯影並 開出來,其餘的區域還是由光阻覆蓋, 之後即可進行電鍍製程。厚光阻在半導 體製程中並不普遍,其材料供應商(如 表一所示) 並不多。或許可以考慮使用 在PCB製程上的乾膜,但是乾膜材料需 要進一步改良,達到IC等級的材料規 格。


曝光系統可用步進對準機(Step-per) 或是一般曝光機(Aligner),由於凸塊的規格大致在35μm以上,所以一般曝光機的對位系統皆可達到所要求的解析度。但IC的黃光製程所使用的設備幾乎是步進對準機,其中不同光學系統的銜接,則要靠IC廠和Bumping House之間的配合 ,互相傳輸光罩的圖檔,要不然

Bumping House在光罩及Bumping製程上的對位系統將會產生連接不匹配的問題

顯影的製程可分為兩種:

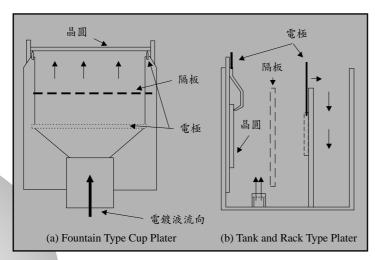
- (1)Immersion Type
- (2)Spray及Puddle

當然這兩種各有其優缺點如表二所示。選擇何種方式是以產品規格及價格二者為考量因素,若是在Large Bump Pitch則Immersion方式是快速及最直接的顯影方式,因為只要有良好的流體及溫度控制的化學槽皆可達到顯影的規格,而且是以一個Cassette的方式在顯影,所以在Throughput 及顯影液的使用量都是最經濟的,但是在Small Pitch及要比較高解析度的顯影規格,Spray及Puddle方式才有可能達到。LCD Driver IC 的 Bonding

圖四 標準的金凸塊製程流程

表一 適用Bumping製程的光阻種 類

產品型號	供應商	最高厚度/ Coating	光阻型態
AZ4602	Hoechst	10-20μm	正光阻
AZPLP	Hoechst	10~20μm	正光阻
THB-30	JSR	15~30μm	負光阻


Pad 和一般IC 不同點在於Pitch 和Size 的 規格都很小,一般IC Bonding Pad 的設計 都是以Wire Bonding 方式封裝為主,所以Pad Size 大多在50 μm 以上,再加上約 20 μm 的間距,但是LCD Driver IC 其主要封裝方式為TCP 及COG,所以其 Pad Size 有小至 40 μm,而間距有小至 10~15 μm 之間,若是沒有用Spray Type 的顯影方式是無法達到所需的解析度。

三.金電鍍製程

電鍍製程是控制金凸塊品質的最重要項目之一,此製程系統總共分為三部份:

- (1)電鍍系統
- (2)電鍍液
- (3)晶圓夾具
- 以下則對此三項作一介紹:
- 1. 電鍍系統

電鍍系統是指電鍍設備。在電鍍設備型態上也分為兩種,第一種是噴流式

圖五 (a)&(b)為兩種電鍍槽的設計模式

(Fountain Type)的此種電鍍系統如圖五 (a) 所示,晶圓是面朝下,而電鍍液是由下往上噴向晶圓的電極。而電極的接觸點則是在噴流口邊緣,電鍍液由下往上噴之後,再經由晶圓邊緣回流到過濾系統;第二種是一般的電鍍槽,它和PCB廠所使用的電鍍系統類似,如圖五 (b) 所示,兩個平面電極,中間為隔板,以及電鍍液的噴流系統,其構造簡單可隨著槽體擴大而增加產能。但是晶圓的製程傳輸系統完全和一般PCB不同,這一觀念是在製作晶圓所必須完全考慮的,表三所示為此二類電鍍系統的優缺點比較。

電鍍系統主要是構成電鍍的控制系統,其中包括電鍍的 Power Supply、液體流量控制、溫度控制、過濾系統等,因為在晶圓上的電化學反應及金屬的沉積,是經由電鍍系統的控制而得到所需的電鍍當量,而將所需的金屬沉積至所需的區域,這是在設計電鍍系統需要考慮的,再加上如何控制電流使其平均分佈在晶圓表面上,對產品良率都有很大影響。使用在晶圓上的電鍍設備,以目前來說,並不是很成熟而且很昂貴,所

表二 為二種顯影方式的優缺點

	Immersion	Spray puddle
設備	Chemical Station	Developer Track
Throughput	高	低
製程 Cost	低	高
顯影能力	只能做	可做
	Large Pitch	Small Pitch
製程自動化程度	低	高

= -	為兩種オ	— IIII —	ᅷᄉᅉᅪ	5 6 6 6 1	L
75 —		\ I=I #! -	-/ 土庫 /庫	9 H'\ F	
表二	一分回 에서 까무 기	10142	レノ・・シマ イド	4 U'I L	d a

	晶圓放置方式	晶圓傳輸	鍍液管理	晶背保護	設備價格
噴流式 (Fountain Type)	面下	可自動化	可	不需要	貴
上噴式電鍍槽 (Tank or Rack)	和噴流方向平行	較難自動化	可	需要	便宜

以每家Bumping House 都有其獨特方式以 降低製程成本。而對台灣半導體設備廠 商來說,可以說是容易切入的一項新興 半導體設備,因為現在及未來銅製程在 半導體製程也是發展重點之一。銅製程 則會用到電鍍銅製程,所以晶圓的電鍍 設備對台灣的設備廠商來說,是很適合 投入研究開發的一項。若是晶圓的電鍍 設備成熟,不僅可以支援台灣Bumping的 產業,同時發展銅製程,而且在半導體 設備的產業上,亦可順勢佔一席之地。

2.電鍍液

電鍍液是在電鍍系統中決定鍍金品 質的要素之一,每家電鍍液廠商都有其 獨特配方以滿足客戶品質需求。金的電 鍍液通常有兩類:

(1)氰酸類

(2)非氰酸類。

在環保比較嚴苛的國家,已漸漸禁止氰酸類電鍍液的使用,但是由於氰酸類電鍍液從以前的歷史經驗累積,通常都能達到較好的電鍍品質及較長的電鍍液使用壽命。電鍍液的成份很複雜,不同Supplier 有不同的配方,其所強調的項目如表四所示,但最終還是要以結果而定,所以選定電鍍液的供應商,需要有長時間的驗証規劃,當然最好是依照客戶的經驗來選是最直接,風險也是最低的。

電鍍液的管理在電鍍製程品質維護上亦是非常重要,因為在此電鍍過程中,控制因子有數十項,每一項幾乎都影響電鍍品質的持續性,如表五列出其中監控的項目,每項皆會影響電鍍的品質。當然若能整合成為完全由電腦系統監控則是最好方式,可以減少人為的錯誤,因為在電鍍製程管制上,人為操作錯誤還是佔最大比率。

3.電鍍夾具

晶圓的電鍍夾治具設計亦是非常困 難的一項,因為晶圓的屬性是易碎,半

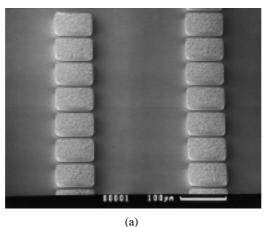
表四 廠商提供的電鍍液規格

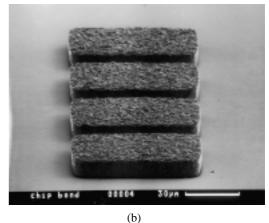
	Company A	Company B	Company C
金屬濃度g/1	10~14	7~10	8~12
析出純度	99.99+	99.99+	99.99+
硬度(Hv)	60~90	80~110	80~110
析出重量mg/µm cm²	1.92	N/A	NA
析出速度min/μm	3.2 min 0.5A/dm ²	N/A	4.1 min 0.5A/dm ²
析出效率mg/A.min	110 120	115 120	NA
電流密度A/dm²	0.1~1.2	0.2~1.0	0.4~0.8
рН	7.6~7.8	6.0~6.8	7.5~7.8
操作溫度℃	60~70	60~70	55~65

表五 影響電鍍品質的要素及其管制方式

項目	分析方式	Contorl Method
Au濃度	ICP	SPC
рН	pH meter	SPC
温度	溫度計	SPC
金屬不純物	AA	SPC
有機不純物	UV	SPC
比重	比重計	SPC
電流條件	Current Control Meter	Monitor

導體表面不能觸碰,這都使夾治具在設計上受到很大的侷限,由於夾治具設計的困難度高,所以每家廠商都視為Know-How而不輕易示人,因此各家廠商都可發揮其想像力,發展出自己獨特的電鍍夾治具。


四.光阻去除及金屬蝕刻製程


触刻製程是在光阻去除後段,將 Sputter的Au及TiW蝕刻去除,蝕刻Au及 TiW是在製程中較易達成的項目。在製 程中主要控制的項目是

(1) Undercut

(2)金屬殘留(Residue)

Undercut是過度蝕刻所造成的,而 金屬殘留則是蝕刻不完全所造成。當然 Undercut及金屬殘留最終都會影響到可 靠度,所以在製程管制上也是不可忽視

圖六 (a)&(b): 金凸塊的SEM照片

表六 適用於TCP及COG金凸塊的品 質項目規格

項目	規格	應	用
投口	<i>አ</i> ቲ1ロ	TCP	COG
Au硬度 (Vickers)	30-80 Hv	適用	適用
表面粗造度	<3.0 μm	適用	適用
剪應力(shear Strength)	≥4g/mil²	適用	適用
高度	12-20μm	適用	適用
平整度	<2.5μm	適用	適用
面積	依設計而定	依設計而定	23000 μm ² (依ACF 種類而定)

的項目。

金凸塊的品質要求

金凸塊的成品如圖六所示,但是實 際凸塊產品在凸塊周圍會隆起,這是由 Passivation高度造成的。品質及規格項 目如表六所示,是適用一般的金凸塊產 品製程,但若有其他的特殊規格可以修 改製程及設計訂出特殊規格。這些品質 規格只是針對外觀及機械特性,在製程 上可以訂出管制規格,但內在的品質如 金凸塊的晶體結構, Contact Resistance 及UBM的可靠度,無法訂出製程管制的 規格,只能作製程監控或長期分析。

結語

凸塊技術只是元件結合的起始點, 未來在元件結合上是否會發展另外一項 結合技術,則不得而知。但是由目前凸 塊技術而衍生出來的元件封裝技術則會 愈來愈多,例如TCP、COG、COF、FC 等或是3D以及其它微機電系統(MEMS) 都會用到凸塊技術。在臺灣半導體產業 愈來愈成熟的環境下,所衍生的半導體 產品種類也會愈來愈複雜,各種產品的 屬性會衍生出不同的封裝技術,但是其 元件結合則會大同小異。所以凸塊技術 將是封裝技術的一個基礎,而且其掌控 IC訊號的進出,凸塊製造技術的發展, 會將IC的封裝技術帶進另一個層次。

參考文獻

- (1) 火田 田賢造: TAB 技術入門 (1990)
- (2) Wafer Bumping Technology, 山本好明, 電子材 料, 5, 1999.
- (3) Metallization Scheme Providing Adhesion and Barrier Properties, US Patent :4,927,505.
- (4) Method of Manufacturing a Bump Electrode, US Patent:5,310,699